
Journal of Statistical Physics, 11ol. 37, Nos. 3/4, 1984

Monte Carlo Simulation of Ising Models by
Multispin Coding on a Vector Computer

Stephan Wansleben, 1 John G. Zabol i tzky, ~ and Claus Kalle 1

Received December 7, 1983; revision received May 15, 1984

Rebbi's efficient multispin coding algorithm for Ising models is combined with
the use of the vector computer CDC Cyber 205. A speed of 21.2 million
updates per second is reached. This is comparable to that obtained by special-
purpose computers.

KEY WORDS: Ising model; Monte Carlo method; multispin coding; vector
computer.

1. INTRODUCTION

Monte Carlo simulation of the Ising model has been improved by various
techniques during the last few years. The most efficient methods are the
multispin coding technique for general-purpose computers ~1,2) (such as the
IBM 370/168 or CDC Cyber 176), the use of special-purpose computers, ~3)
and array processors. ~4) The multispin coding technique is based on the bit
logical operations of a general-purpose computer. Monte Carlo simulation of
the three-dimensional Ising model using this technique has been performed
with a speed of up to 1.6 million updates per second on a CDC Cyber
176. ~2'5) Special-purpose machines realize the algorithm by an appropriate
hardware structure. Their speed is up to 25 million updates per second,
which is 16 times the speed of multispin coding on a scalar computer.
Finally, the array processor is a set of paralMy working microprocessors.
These processors can simultaneously work on and store different parts of the
lattice due to the locality of the Monte Carlo algorithm. Speeds up to
9.5 million updates per second are reached when applying this method.~4)

1 Institut ffir Theoretische Physik der Universitiit zu K61n, Z/ilpicher Str. 77, 5000 K61n 41,
West Germany.

271

8 2 2 / 3 7 / 3 - 4 - 1 00224715/84/1100-0271$03.50/0 �9 1984 Plenum Publishing Corporation

272 Wansleben, Zabolitzky, and Kalte

In view of the speed reached by special-purpose machines, it is an
exciting question whether it is possible to reach comparable speedups by
using a faster general-purpose machine such as the vector computer CDC
Cyber 205. A speedup factor of 13 above the CDC Cyber 176 program ~2)
and an absolute speed of 21.2 million updates per second on a two-pipe
500K CDC Cyber 205 of the state of Nordrhein-Westfalen located at
Bochum University, West Germany, were reached using the multispin coding
technique.

2. MULTISPIN CODING ON THE SCALAR COMPUTER
CDC CYBER 176

The multispin coding technique is explained in detail in the
literature. (1'2) A modified version of the standard program is given here to
facilitate understanding of the vector algorithm presented later. This program
runs on a CDC Cyber 176 with 60-bit words.

The configuration (up-down encoded by 1-0) of 20 spins is stored in
one computer word, using three bits per spin. This allows the addition of the
values of the logical difference (XOR) to all six neighbors for each of these
spins simultaneously while calculating the interaction energy. This precludes
that next neighbors are stored in different words. Thus the minimum system
size of a cubic lattice is 403, where each row (for convenience, in 1-
direction) is represented by two computer words. In this way, the lattice is
divided into two sublattices (ISODD, ISEVEN) each containing the odd,
resp. even, lattice sites within all rows.

The main parts of this program are quoted in Fig. 1. Helical boundary
conditions ~6) are employed in 2-direction. With these boundary conditions
the left-most spins of each 1-2 plane are coupled to the rightmost spins of
the plane above (for convenience, left means 2-direction, above 3-direction,
and backwards 1-direction). So elements of the arrays ISODD and ISEVEN
can be treated consecutively, without any conditionally executed code.
Periodic boundary conditions in 1-direction are an effect of the circular shift
performed by the function SHIFT. Periodic boundary conditions in 3-
direction are achieved by placing copies of the first and the last plane of the
lattice above and below the real lattice. (7) These copies are not treated in the
course of the Monte Carlo procedure but are updated after a complete sweep
through the lattice.

3. MULTISPIN CODING ON THE CDC CYBER 205

A vector computer performs operations on a given set of data, termed a
"vector," in an assembly-line fashion. The total execution time for a vector

INTEGER COUNT
C COUNT IS AN INTEGER FUNCTION TO COUNT THE BITS BET IN A
C COMPUTER WORD SUPPLIED BY THE FORTRAN IV LIBRARY.

DIMENSION IEX(7)
C IEX CONTAINS THE FLIP PROBALITY IN AN UNNORMALIZED FLOATING
C FORMAT, WHERE THE EXPONENT IS FORCED TO -47. THIS IS NEEDED
C TO USE ONLY ONE MULTIPLY INSTRUCTION TO SUPPLY A RANDOM NUMBER
C WHICH HAS ALWAYS THE EXPONENT -47 AND 48 BITS OF MANTISSA
C SIGNIFICANCE.

C SET SYSTEM SIZE
L=40

C SOME USEFUL CONSTANTS
LPI-L+I
LSQ=L~L
LSQPL=LSQ+L

TREATMENT OF THE ODD SPINS
COMPUTE NUMBER OF ANTIPARALEL NEIGHBOURS

DO i K=LPI,LSQPL
IODD=ISODD(K)
IEVEN=ISEVEN(K)
IE:XOR(IODD,IEVEN)+KOR(IODD,SHIFT(IEVEN,57))

& +XOR(IODD,ISODD(K-I))+XOR(IODD,ISODD(K+I))
& +XOR(IODD,ISODD(K-L))+XOR(IODD,ISODD(K+L))

PREPARE LOOP OVER EO SPINS IN ONE WORD
ICH - FLIP DECISION ACCUMULATOR
KE - MASK FOR EXTRACTING ONE SPINS ENERGY
KES - SHIFTCOUNT TO RIGHT JUSTIFY MASKED ENERGY VALUE
KS - SHIFTCOUNT TO MOVE SIGN BIT TO DESIRED POSITION
KSIGNM - MASK TO EXTRACT A NUMBERS SIGN IN 60 BIT OCTAL

REPRESENTATION
ICH=O
RE=7
KES-O
KS:I
KSIGNM:4OOOOOOOOOOOOOOOOOOOB
DO B II:l,RO
ISCR=AND(IE,KE)
ISCR=SHIFT(ISCR,KES)
ISCR=IEX(ISCR)
IRAND=IRAND~MULT
IDI=IRAND-IEX(INDEX+I)
IDI:AND(IDI,KSIGNM)
IDI=SHIFT(IDI,KS)
ICH=OR(ICH,IDI)
KE=SHIFT(KE,3)
KES=KES-S
KE=KS+3
CONTINUE
ISODD(K)=XOR(IODD,ICH)
CONTINUE

C TREATMENT OF THE ODD SPINS

C CALCULATION OF THE MAGNETIZATION
M-O
DO 3 I3=LPI,LSQPL
M=M+COUNT (ISODD (K'q) +COUNT (I • Eg"itN (K))

S CONTINUE

Fig. 1. Central parts of the modified scalar multispin coding program which the vectorization
is based on. The lattice size is fixed at 403. A N D , OR, and XOR are intrinsic functions
supplied by CDC FORTRAN. They perform the specified boolean operation on their arguments.
The intrinsic function SHIFT shifts a word left circular by the number of bits specified in the
second argument.

274 Wansleben, Zabolitzky, and Kalle

instruction is composed of a fixed amount, called startup time, and a time
proportional to the number of data elements or the vector length. For
efficient algorithms, the startup time is comparatively small to the instruction
execution time. The longer the stream of data the more efficient is the use of
the vector feature.

The algorithm of a vector computer is similar to the scalar algorithm in
which the elements of each row in 1-direction are scattered into two
computer words (even/odd). In the vector algorithm, the whole lattice is
divided into two vectors (ISRED and ISBLCK) consisting of multispin
words. In the scalar algorithm, each word contains nonneighbored spins,
whereas in the vector algorithm, each vector must contain nonneighbored
spins because the entity treated by the machine is no longer a word but a
vector.

The multispin coding technique relies on unsigned integer arithmetic
instructions. These instructions use the 48 right-most bits of a 64 bit word on
a CDC Cyber 205. Thus one word can accomodate only 16 spins each,
using three bits, while the 16 left-most bits are always zero. The
programming of boundary conditions in 1-direction can be carried out as a
single shift operation by changing them from periodic to fixed: the backward
neighbor of the most backward and the forward neighbor of the most
forward spin in each row are fixed at zero, resulting from a shift of the 16
left-most bits of a machine word. The boundary conditions in the other
directions do not present any difficulty.

The processing of the neighbors in 1-direction is now discussed. When
calculating the logical difference between a spin and its next neighbors in 1-
direction, the latter must occupy the same bit position as the inspected spin.
Since one neighbor is already in the correct bit position, the word containing
the other neighbor must be shifted by three bit positions. The shift direction
alternates its sign when passing a 1-2-plane boundary due to the sublattice
structure. The correct shift count for every word of a sublattice vector is
computed by the program into the vectors LOSC and NOSC (lines 27 to 32
in Fig. 2).

4. SPECIAL LANGUAGE ELEMENTS OF CDC
CYBER 205 FORTRAN

To assist the understanding of the given program (Fig. 2), some
introduction to the CDC Cyber 205 FORTRAN "dialect" is useful here. This is
only an overview. A more detailed description can be found in the
appropriate reference manuals. (8'9)

Monte Carlo Simulation of Ising Models by Multispin Coding 275

PROGRAM ISING (OUTPUT,TAPE6=OUTPUT) GO001

C PUT ALL DATA ON LARGE PAGES SO THAT ALL PAGES WILL

C FIT ASSOCIATIVE REGISTERS AND NO PAGE FAULTS OCCOUR

COMMON /LP/ 00002
C ARRAYS FOR THE REGISTER SWAP INSTRUCTION

IRSV(64), IEXL(64),

C THE TWO SUBLATTICE ARRAYS
ISRED(1088), ISBLCK(IO88),

C ARRAY HOLDING RANDOM NUMBERS
ICDC(1274),

C ARRAY HOLDING ENERGY VALUES IN MULTISPIN CODING

IE(I024),
C ARRAY USED TO ACCUMULATE FLIP DECISIONS

ICH(I024),

C ARRAYS HOLDING SHIFT COUNTS (BOUNDARY CONDITION IN I-DIRECTION)

L03C(I024), N03C(I024),
C ARRAY USED FOR SCRATCH

ISCR(I024),
C ARRAY AND INTEGER EQUIVALENT FOR BOLTZMANN PROBABILTIES

EX(7), IEX(7)
C BIT ARRAYS EQUIVALENCED TO THE SUBLATTICES AND DESCRIPTOR NAMES

BIT BREDI(34816),BREDB(34816),BBLCKI(34816),BBLCE2(34816), 00003

BREDID,BRED2D,BBLCKID,BBLCK2D
C DEFINE DESCRIPTOR NAMES

DESCRIPTOR ISREDD, ISBLCKD, IED, ICDCD, ISCRD, 00004

ISOD, ISUD, ISRD, ISLD, LOSCD, NOSCD,
BREDID, BRED2D, BBLCKID, BBLCK2D

LOGICAL LD2 00005

C EQUVALENCE BIT ARRAYS TO SUBLATTICES (USED TO COMPUTE MAGNETIZATION)

EQUIVALENCE(BREDI(1),ISRED(1)),(BRED2(1),ISRED(545)), 00006

(BBLCKI(1),ISBLCK(1)),(BBLCK2(1),ISBLCK(545))
C

C PRESETS FOR LATTICE AND BOLTZMANN FACTORS

DATA ISRED/IO88*O/, ISBLCK/I088*O/, EX/7".9999999999/ 00007

C
C SET TEMPERATURE

T = .9/.221655 00008

C SET SYSTEM SIZE AND RELATED CONSTANTS

L = 32 00009
LPI = L + 1 00010

LPIPI = LPI + 1 00011
LPL = L + L 00012

LSQ = L*L 00013
LSQPL = LSQ + L O001a

LSQPI = LSQ + 1 00015
LCUBE = L*L*L 00016
DEN = I./LCUBE 00017

LPLPI = LPL + 1 00018
LSQPLPI = LSQPL + i 00019

KI6 = 18 00020
KS = 3 0 0 0 2 1

K7 = 7 00022
KM47 : -47 00023

C INITIALIZE RANDOM NUMBER GENERATOR WITH SEED ICDCO

ICDCO=O 0 0 0 2 4

CALL RANINIT(ICDC,ICDCO) 00025
C PREPARE FOR SHIFTS

LD2 - .FALSE. 00026
DO 9B I = I,LSQ 00027
IF(I.NE.L*(I/L)) LD2 = .NOT.LD2 00028

LOSC(I) = -3 00029
IF(LD2) GOTO 99 00030

LOSC(I) = 3 00031
99 NOSC(I) = - LOSC(1) 00032

Fig. 2. Complete listing of the multispin coding program for a 32<lattice on a
Cyber 205. Special language elements of Cyber 200 FORTRAN are explained in the text.

CDC

276 Wansleben, Zabolitzky, and Kalle

C SET NONTRIVIAL BOLTZMANN FACTORS
EX(1) = EXP(-12./T) 00033
EX(2) = EXP(-8./T) 00034
EX(3) - EXP(-4./T) 00035

O NORMALIZE BOLTZMANN FACTORS TO (i,2~23-i) INTERVAL INTO ARRAY IEX
DO 1 IND ~ 1,7 00036
I=(2-*~47)~EX(IND) 00037

1 IEX(IND)=SHIFT(I,-24) 00038
C SETUP LOOKUP TABLE (IEXL) FOR VXTOV

DO i01 II=l,7 00039
DO i01 I=I,7 00040
IEXL((II-I)~8+I)=OR(SHIFT(IEX(II),S2),IEX(I)) 00041

i01 CONTINUE 00042
C ASSIGN CONSTANT DESCRIPTORS TO CORRESPONDING VECTORS

ASSIGN ISREDD, ISRED(LPI;LSQ) 00043
ASSIGN ISBLCKD, ISBLCK(LPI;LSQ) 00044
ASSIGN IED, IE(I;LSQ) 00045
ASSIGN LOSCD, LOSC(I;LSQ) 00046
ASSIGN NOSCD, NOSC(I;LSQ) 00047
ASSIGN ISCRD, ISCR(I;LSQ) 00048

C
C SWEEPS THROUGH LATTICE
C TOP OF LOOP FOR MONTE CARLO STEPS

DO 6 ITIME : 1,SO 00049
CALL SECOND(TO) 00050

C TREATMENT OF THE RED-SPINS
C i. ASSIGN LEFT - RIGHT - UPPER - LOWER NEIGHBOURS

ASSIGN ISLD, ISBLCK(L;LSQ) 00051
ASSIGN ISRD, ISBLCK(LPIPI;LSQ) 00052
ASSIGN ISOD, ISBLCK(LPLPI;LSQ) 00053
ASSIGN ISUD, ISBLCK(I;LSQ) 00054

0 2. COMPUTE NUMBER OF ANTIPARALLEL NEIGNBOURS
CALL Q8XORV(O,,ISREDD,,ISBLCKD,,IED) 00055
CALL Q8XORV(O,,ISREDD,,ISLD,,ISCRD) 00056
IED :IED + ISCRD 00057
CALL Q8XORV(O,,ISREDD,,ISRD,,ISCRD) 00Q58
IED =IED + ISCRD 00059
CALL Q8XORV(O,,ISREDD,,ISOD,,ISCRD) 00060
IED =IED + ISCRD 00061
CALL Q8XORV(O,,ISREDD,,ISUD,,ISCRD) 00062
IED - IED + ISCRD 00083
CALL Q8SHIFTV(O,,ISBLCKD,,LOSCD,,ISCRD) 00064
CALL QSXORV(O,,ISREDD,,ISCRD,,ISCRD) 00065
IED - IED + ISCRD 00066

C S. ATTEMPT TO FLIP THE RED SPINS
CALL ISFLIP(IE,ISCR,ISRED(LPI),ICH,ICDC,IEXL,IRSV) 00067

C TREATZENT OF THE BLACK-SPINS
ASSIGN ISLD, ISRED(L;LSQ) 00068
ASSIGN ISRD, ISRED(LPIPI;LSQ) 00069
ASSIGN ISOD, ISRED(LPLPI;LSQ) 00070
ASSIGN ISUD, ISRED(I;LSQ) 00071
CALL Q8XORV(O,,IZBLCKD,,ISREDD,,IED) 00072
CALL QSXORV(O,,ISBLCKD,,ISRD,,ISCRD) 00078
IED =IED + ISCRD 00074
CALL QSXORV(O,,ISBLCKD,,ISLD,,ISCRD) 00078
IED - IED + ISCRD 00076
CALL QSXORV(O,,ISBLCKD,,ISOD,,ISCRD) 00077
IED :IED + ISCRD 00078
CALL QSXORV(O,,ISBLCKD,,ISUD,,ISCRD) 00079
IED =IED + ISCRD 00080
CALL Q8SHIFTV(O,,ISREDD,,NOSCD,,ISCRD) 00081
CALL QSXOHV(O,,ISBLCKD,,ISCRD,,ISCRD) 00082
IED =IED + ISCRD 00083
CALL ISFLIP(IE,ISCR,ISBLCK(LPI),ICH,ICDC,IEXL,IRSV) 00084

Fig. 2 (continued)

Monte Carlo Simulation of Ising Models by Multispin Coding 277

C TAKE CARE OF PERIODIC BOUNDARY CONDITIONS

ISBLCK(LSQPLPI;L) = ISBLCK(LPI;L) 00085

ISBLCK(I;L] - ISBLCK(LSSPI;L) 00086

ISRED(LSQPLPI;L) = ISRED(LPI;L) 00087
ISRED(I;L) - ISRED(LSQPI;L) 00088

C COMPUTE CPU TIME USED

CALL SECOND(T1) 00089
TTOT = T1 - TO 00090

TPS = TTOT/(L~L~L) 00091
FPS = I.OE-6~L~L~L/TTOT 00092

WRITE(6,5] ITIME,TTOT,TPS~FPS 00093
5 FORMAT(120,F20.B,F20.12,F20.6) 00094

C BOTTOM OF LOOP FOR A MONTE STEP

6 CONTINUE 00095
C COMPUTE MAGNETIZATION USING VECTORIZED COUNT-COMMAND

ASSIGN BREDID,BREDI(2049;S2768) 00098
ASSIGN BRED2D,RRED2(I;92768) 00097

ASSIGN BBLCKID,BBLCEI(2049;S2788) 00098
ASSIGN BRLCK2D,BBLCK2(I;32768) 00099

M : QSSCNT(BREDID) 00100
M = M + Q8SCNT(BRED2D) 00101

M - M + @8SCNT(BBLCKID) 00102

M - M + Q8SCNT(BBLCK2D) O010S

SM : (2*M - LCUBE)*DEN 00104
C PRINT RESULT

WRITE(6,7) SM 00105
7 FORMAT(/F9.6//) O010B

STOP 00107

END 00108
SUBROUTINE RANINIT(ICDC,ICDCO) 00001

C SETUP RANDOM NUMBER SEED FOR SHIFT REGISTER RANDOM NUMBER GENERATOR

C INITIALIZE FIRST 250 WORDS OF ARRAY ICDC WITH RANDOM BITS

DIMENSION ICDC(1274) 00002
C

C SET SEED FOR CDC-SUPPLIED RANDOM NUMBER GENERATOR RANF
CALL EANSET(ICDCO) O000S

C LOOP OVER WORDS

DO 200 IW=I,250 00004
C ZERO ACCUMULATOR

IC-O 00005
C LOOP OVER HALFWORDS

DO i00 IHW=I,2 00006

C ACCOUNT FOR HALFWORD EXPONENT AND MANTISSA SIGN BIT

IC=SHIFT(IC,9) 00007
C LOOP OVER BITS IN A HALFWORD MANTISSA

DO i00 IB=I,23 00008

IC-SHIFT(IC,I) 00009
C EACH BIT IS SET USING A RANF DECISION

IF(RANF(X).GE.O.5) IC:OR(IC,I) 00010
i00 CONTINUE 00011

C STORE A RANDOM SEED WORD

ICDC(IW)=IC 00012
200 CONTINUE O001S

RETURN 00014

END 00015
SUBROUTINE ISFLIP(IE,ISCR,IS,ICH,ICDC,IEXL,IRSV) 00001

C THIS ROUTINE DOES THE FLIP DECISIONS USTNG THE MONTE CARLO METHOD
C VARIABLE NAMES ARE THE SAME AS IN PROGRAM ISINO
C

C DEFINE INTEGER NAMES FOR DESCRIPTORS USED FOR ARRAY ICDC
INTEGER AD,BD,CD,SEED 00002

C ARRAYS HAVE THE SAME DIMENSIONS AS IN PROGRAM ISING

DIMENSION IE(I024), ISCR(I024), IS(I024), ICH(I024), ICDC(1274) OOOOS
DIMENSION IEXL(64), IRSV(84) 00004

Fig. 2 (continued)

278 Wansleben, Zabolitzky, and Kalle

C DEFINE DESCRIPTOR VARIABLES
DESCRIPTOR IED, ISCRD, ISD, ICHD, ICDCD, AD,BD,CD,SEED, IEXD 00005
DESCRIPTOR IRSD 00006
DESCRIPTOR ICDCDH, ISCRDH 00007

C DEFINE TWO DATA CONSTANTS
C KONE IS A BIT MASK OF 001 REPEATED 18 TIMES, RIGHT JUSTIFIED IN HEX
C NOTATION. KM29 IS A CONSTANT TO SHIFT RIGHT CIRCULAR BY 29 PLACES

DATA KONE/X'OOOO249249249249'/, KM29/35/ 00008
C ASSIGN CONSTANT DESCRIPTORS

ASSIGN IED, IE(I;I024) 00009
ASSIGN ISCRD, ISCR(I;I024) 00010
ASSIGN ISCRDH, IBCR(I;2048) 00011
ASSIGN ISD, IS(I;I024) 00012
ASSIGN ICHD, ICH(I;I024) 00013
ASSIGN ICDCD, ICDC(251;I024) 00014
ASSIGN ICDCDH, ICDC(251;2048) 00015
ASSIGN AD, ICDC(I;I024) 00016
ASSIGN BD, ICDC(148;I024) 00017
ASSIGN CD, ICDC(I025;250) 00018
ASSIGN SEED, ICDC(I;250) 00019
ASSIGN IEXD, IEXL(I;64) 00020
ASSIGN IRSD, IRSV(I;64) 00021

C DEFINE REGISTER NUMBER OF REGISTER SWAP (80 SEX)
IREG=I28 00022

C DEFINE REGISTER BIT OFFSET USED BY THE VXTOV INSTRUCTION
IREGB=IREG*64 0 0 0 2 3

C MOVE FLIP PROBABILITY LOOKUP TABLE TO REGISTER FILE FOR FAST ACCESS
C AT THE SAME TIME, THE OLD REGISTER CONTENTS ARE SAVED INTO ARRAY IRSV

CALL QSSWAP(IEXD,IREG,IRSD) 0 0 0 2 4
C CLEAR ARRAY RECEIVING FLIP DECISIONS

ICHD=O 00025
C SETUP A MASK FOR 2 SPINS (6 BIT)

KE=63 00026
C SETUP SHIFT COUNT TO RIGHT-JUSTIFY AN EXTRACTED ENERGY VALUE

KES=O 00027
C SETUP SHIFT COUNT TO POSITION RESULT OF SUBNV TO CORRECT BIT POSITION

KS=-23 00028
C ENTER HALFWORD REGISTER iO (A HEX) WITH THE MANTISSA SIGN BIT CONSTANT

CALL Q8EXH(IO,X'800000') 00029
C LOOP 8 TIMES TREATING 2 SPINS PER TRIP

DO 3 II=l,8 00030
C EXTRACT ENERGY (ANDV) AND RIGHT-JUSTIFY IT (SHIFTV)

CALL Q8LINKV(X'IO') 00031
CALL QSANDV(X'O9',,IED,,KE,,ISCRD) 00032
CALL QSSHIFTV(X'OS',,ISCRD,,KES,,ISCRD) 00033

C GET FLIP PROBABILITIES
CALL QSVXTOV(X'OI',,ISCRD,,IBEGB,,ISCRD) 00034

C COMPUTE NEW SET OF RANDOM NUMBERS
CALL Q8XORV(O,,AD,,BD,,ICDCD) 00036
CALL Q8VTOV(O,,CD,,,,SEED) 00036

C SUBTRACT FLIP PROBABLITIES FROM RANDOM NUMBERS (SUBNV) AND EXTRACT
C SIGN BIT (ANDV). THIS IS DONE USING HALFWORD INSTRUCTIONS.

CALL QSLINKV(X'IO') 00037
CALL Q8SUBNV(X'80',,ICDCDH,,ISCRDH,,ISCRDH) 00038
CALL QBANDV(X'89',,ISCRDH,,IO,,ISCRDH) 00039

C ADJUST POSITION OF SIGN BIT (SHIFTV) AND SAVE IT INTO ARRAY ICH (XORV)
CALL 08LINKV(X'IO') 00040
CALL Q8SHIFTV(X'OS',,IBCED,,KS,,ISCRD) 00041
CALL QSXORV(O,,ISCRD,,ICHD,,ICHD) 00042

O UPDATE MASK AND SHIFT VARIABLES
CALL 08SHIFTI(KE,B,KE) 00043
KES=KES-6 00044
KS=KS+6 00045

C BOTTOM OF LOOP 3
3 CONTINUE 00046

Fig. 2 (continued)

Monte Carlo Simulation of Ising Models by Multispin Coding 279

C POSITION THOSE BITS RESULTING FROM UPPER HALFWORDS DURING LOOP 3
CALL Q8LINKV(X'IO') 00047
CALL QSSHIFTV(X'OS',,ICHD,,KH29,,ISCRD) 00048
CALL Q8XORV(O,,ISCRD,,ICHD,,ICHD] 000~9

C MASK OUT USEFUL BITS ONLY
CALL QSANDV(X'Og',,ICHB,,EONE,,ICHD) 00050

C FLIP THOSE SPINS TO BE FLIPPED
CALL QSXORV(O,,ICHD,,ISD,,ISB) 00051

C RESTORE REGISTER FILE FROM ARRAY IRSV
CALL QSSWAP(IRSD,IREG,) O0052
RETURN 00058
END 00054

Fig. 2 (continued)

4.1. The DESCRIPTOR Statement

A vector is represented by descriptors. A descriptor consists of the bit
address of the first element in bits 16-63 and the vector's length in bits 0-15.
Bits are counted from left to the right starting with zero. All descriptors have
to be declared as such and must be of the same type as the vectors which
they are assigned to later on. The DESCRIPTOR statement is a nonex-
ecutabte statement, and explicit- or implicit-type declarations accomplish
this.

4.2. The Vector ASSIGN Statement

The vector ASSIGN statement assigns a vector to a descriptor variable.
A vector in this context means some contigious part of an array defined by
the first element and the vector length denoted as VECTOR(IFIRST;
LENGTH).

4.3. Coding of Vector Instructions

There are two ways of coding vector instructions. The first is to use
descriptors or vectors in the above sense in the usual VORTRAN arithmetic
assignment statements. This means that the expression on the right-hand side
is evaluated for all vector elements by vector instructions. If a scalar appears
in the expression its value is repeated for each vector element.

Not all vector hardware instructions are accessible by standard
FORTRAN language elements. The remaining ones have to be coded by usage
of special calls, which are in effect machine instructions. A special call for a
vector instruction has the form

CALL Q8XXXXV(G-bits,,A,,B,,C)

where A, B, and C denote descriptors or scalar variables. The G-bits
represent an 8-bit mask which further defines the operands and the

280 Wansleben, Zabolitzky, and Kalle

instruction. The vector represented by C is computed using the operation
XXXX on the operands A and B, which may be either a scalar or a
descriptor as selected by G-bits 3 and 4.

In the presented program the following operations appear:

Q8XORV - - a bit-wise exclusive OR,
Q8ANDV - - a bit-wise AND,
Q8SHIFTV--a left circular shift A by B,
Q8SUBNV--subtract B from A giving normalized result C,
Q8VTOV - -copy A to C,
Q8VXTOV--gather elements directed by vector A from list B to vector C,

in effect similar to C (I) = B (A (I) - 1) on a scalar machine,

Q8-calls using other syntax are:

Q8SHIFTI --shift first operand by number (second operand) left circular,
Q8EXH ----enter halfword register (first argument) with value (second

agument),
Q8SWAP -----exchange part of register file to and from main memory,
Q8LINKV--combine the next two vector instructions to one combined

instruction, effectively feeding the second instruction first
operand with result of the first instruction.

4.4. Further Machine Dependencies

As on most scalar computers, the CDC Cyber 205 has the option of
bit-wise logical operations. We use OR, a logical OR of the arguments, and
SHIFT, a left circular shift by a positive second argument and a right sign
extended, end off shift by a negative second argument. There is also the
option to operate on "halfwords." They consist of 32 bits, and two of them
can be regarded as one 64-bit word. The operating speed on halfwords is
twice that for words. In the given program, vectors consisting of halfwords
are represented by descriptors named ending with the letter H.

5. THE INNER-MOST LOOP

The inner-most loop is transfered into subroutine ISFLIP (Fig. 2) for
technical reasons. Except for the random number generator code (line 35 and
36), this inner-most loop basically arises from the scalar code described
above (Fig. 1) by straightforward vectorization neglecting for the moment
halfwords and Q8LINKV instructions.

The loop is executed only eight times rather than 16 times as expected
for 16 spins per word. The reason for this is the simultaneous treatment of

Monte Carlo Simulation of Ising Models by Multispin Coding 281

two spins during one loop trip. In lines 32 and 33 we extract the energy
values for two spins at a time using a mask of six bits resulting in an index
between zero and 62. This index is used (line 34) to retrieve a word from a
list of Boltzmann factors, which at that time is located in the register file for
fast access. The list is specially arranged (see main program, lines 33 to 41)
such that the left-most part of a word contains the flip probability for the left
of the two spins and vice versa. The next two statements produce a random
vector ICDC as explained below. Looking at the vectors ICDC and ISCR as
halfword vectors having twice the length, the next two lines get clear as they
arise from straightforward vectorization. Now the flip decision, decoded
from the sign bits of the halfword vector ISCR, is shifted to a correct
position and saved into vector ICH. Before the spin flips can be carried out
(line 51), some manipulations are needed to adjust the bit positions within
the vector ICH (lines 47 to 50).

One of the most important parts of the algorithm is the random number
generator. As the program requires 23-bit random numbers with large period,
the CDC-supplied function RANF, which generates 47-bit equally
distributed numbers cannot be used (and leads to problems(12)). A shift-
register sequence random number generator introduced by Tausworthe(l~
is employed. It can be viewed as 64 parallely working 1-bit random number
generators each with a period of 225~ The details of this implementation are
of general interest and will be published separately. ~12) Since this random
number generator produces integers in the interval [1 , 2 2 3 - 1], the
Boltzmann factors are normalized to this interval (main program, lines 33 to
38).

In using the Q8SWAP special call, the instruction is valid only if the
following conditions are taken care of: (1) the length of the array which is
being swapped to or from the register file must be an even number, (2) its
first element must have an even word address, and (3) the register number
must be an even number too. Usable registers can be found by inspecting the
register allocation map generated by the FORTRAN compiler. In our case,
those marked FR_nn turned out to be not in use by any FORTRAn-generated
code.

6. D I S C U S S I O N

In this paper we present a program which is useful to show basic
methods to vectorize the multispin coding algorithm and to check out the
power of general-purpose computers compared to existing special-purpose
computers, w e have shown that the speed of this program (21.2 million
updates per second or 47 nsec per update) is comparable to those obtained
on existing special-purpose machines. For a specific application, it might be

282 Wansleben, Zabolitzky, and Kalle

necessary to treat systems of arbitrary size and lattices with periodic
boundary conditions. This can be done at the same speed by enlarging the
number of sublattices and more intelligent treatment of boundary
conditions. ~13) Moreover, for larger systems, larger vector lengths can be
used to diminish the slackening effect of startup times.

Increasing the speed of this algorithm on a C D C Cyber 205 by further
orders of magnitude seems to be impossible. M. Creutz, P. Mitra, and K. J.
M. Moriarty, however, have shown that it might be possible when the
algorithm is changed. (14> They reach a speed of 24 million updates per
second on a C D C Cyber 176 using a microcanonical Monte Carlo
procedure. (~5) We cannot judge whether this method allows Monte Carlo
simulations of specific statistical systems in shorter times compared to the
conventional canonical method since real times for simulation are not yet
published.

A C K N O W L E D G M E N T S

We thank D. Stauffer and W. Welke for helpful discussions, and H.
Schaefer for help and support using S W A P / V X T O V instructions.

REFERENCES

1. R. Zorn, H. J. Herrmann, and C. Rebbi, Comp. Phys. Comm. 23:337 (1981).
2. C. Kalle and V. Winkelmann, J. Stat. Phys. 28:639 (1982).
3. R. B. Pearson, J. L. Richardson, and D. Toussaint, J. Comp. Phys. 51:241 (1983).
4. G. S. Pawley, D. J. Wallace, R. J. Swendson, and K. G. Wilson, Phys. Rev. B 29:4030

(1984).
5. D. Stauffer, private communication.
6. W. Selke, private communication.
7. W. Oed, Angewandte Informatik 7/82, 358 (1982).
8. CDC Cyber 200 Fortran Version 3 Reference Manuel.
9. CDC Cyber 205 Computer Hardware Reference Manual.

10. R. C. Tausworthe, Math. Comp. 19:201 (1965).
11. S. Kirkpatrick and E. Stoll, J. Comp. Phys. 40:517 (1981).
12. C. Kalle and S. Wansleben, Comp. Phys. Comm. 33 (1984), in press.
13. C. Kalle, Diplom Thesis, Cologne University, unpublished.
14. M. Creutz, M. Mitra, and K. J. M. Moriarty, preprint for Comp. Phys. Comm.
15. M. Creutz, Phys. Rev. Lett. 50:411 (1983).

